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Some experimental schemes to identify quantum spin liquids*
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Despite the apparent ubiquity and variety of quantum spin liquids in theory, experimental confirmation of spin liquids
remains to be a huge challenge. Motivated by the recent surge of evidences for spin liquids in a series of candidate
materials, we highlight the experimental schemes, involving the thermal Hall transport and spectrum measurements, that
can result in smoking-gun signatures of spin liquids beyond the usual ones. For clarity, we investigate the square lattice
spin liquids and theoretically predict the possible phenomena that may emerge in the corresponding spin liquids candidates.
The mechanisms for these signatures can be traced back to either the intrinsic characters of spin liquids or the external
field-driven behaviors. Our conclusion does not depend on the geometry of lattices and can broadly apply to other relevant
spin liquids.
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1. Introduction
The search for exotic states in quantum magnets has

been a central topic of intensive investigation in modern
condensed matter physics. Among the various novel quan-
tum states, quantum spin liquid (QSL), a non-symmetry-
breaking phase beyond conventional Landau paradigm, is par-
ticularly appealing due to its potentially relevant to high-
temperature superconductivity[1] and quantum-computation
applications,[2] in which the localized spins are highly
entangled and remain disordered even down to zero
temperature.[3–6] The concept of QSL was originally proposed
by Anderson in 1973 when he studied the nearest neighbor
antiferromagnetical Heisenberg model on triangular lattice.[7]

Although the true ground state of this model has turned out
to be a 120∘ magnetically ordered state, it does ignite the
investigations of QSLs and the interplay between frustration
and quantum fluctuation. Theoretically, various QSL ground
states have been proposed, which are usually characterized by
fractional spinons strongly coupled to emergent gauge field.
In particular, Kitaev proposed[2] an exactly solvable spin-1/2
model on the honeycomb lattice in 2006, in which the presence
of bond-directional Kitaev interactions induces strong quan-
tum fluctuations frustrating the spin configurations and result-
ing in a Kitaev QSL state with emergent Z2 gauge structure.

From the experimental point of view, the kagomé, hyper-
kagomé, and pyrochlore lattice materials with corner-sharing
geometries or the edge-sharing triangular lattice materials pro-
vide ideal platforms to realize such an exotic magnetic ground

state. In most QSL candidates, the results from measure-
ments such as magnetization, heat capacity, and nuclear mag-
netic resonance are consistent with properties of QSLs[3–6] and
show no onset of long-range order at low temperatures. Be-
sides, the crucial signature of a QSL is the presence of de-
confined and fractionalized spinons that can be directly mea-
sured by inelastic neutron scattering and revealed in the ex-
citation continuum, which is fundamentally different from
the sharp and coherent magnon modes in ordered magnets.
The magnetic excitation continuum indeed has been observed
in geometrically frustrated spin-1/2 systems with both two-
dimensional (2D) and three-dimensional (3D) lattices.[8–11]

However, it has been shown that a simple spectral continuum
may also originate from a spin glass state or disorder-induced
state.[12–14] Thus most experimental evidences so far are not
strong enough to completely confirm a QSL.

Here we highlight the experimental schemes that would
give smoking-gun signatures of QSLs beyond the usual ones
mentioned above, including the thermal Hall transport and
spectrum measurements. First, we note that the π-flux QSL
states would result in an enhanced spectral periodicity of the
spinon continuum. It is the translation symmetry that is intrin-
sically fractionalized and renders such an enhanced spectral
periodicity,[15–17] much analogous to the fractional charge ex-
citation in the fractional quantum Hall states where the global
U(1) charge conservation gives the fractional charge quantum
number to the fractionalized excitation.[18] Second, the Zee-
man coupling will enter the spinon Hamiltonian under moder-
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ate magnetic fields, which can lead to an X-shaped crossing of
spectrum compatible with the splitting spinon bands. The third
case is a chiral spin liquid (CSL) that would exhibit a quan-
tized thermal Hall effect and a gapped spectrum. In this work,
we explicitly demonstrate these strong and nontrivial experi-
mental signatures by considering square lattice QSLs, but we
stress that our conclusion does not depend on the geometry of
lattice and can generally apply to other relevant QSLs.

The remaining parts of the paper are structured as fol-
lows. In Section 2, we introduce the Abrikosov fermion con-
struction for the square lattice J1–J2 Heisenberg model and
illustrate the enhanced spectral periodicity for π-flux QSL at
the mean field level. In Section 3, we explain the spectrum
crossing under magnetic fields, which is well compatible with
Zeeman-splitted spinon bands. In Section 4, we consider the
ring-exchange term in the weak Mott insulating regime and
show the integer quantized thermal Hall effect if the ground
state is driven into a CSL phase. We conclude in Section 5
with a discussion of the results.

2. Enhanced spectral periodicity of the spinon
continuum
The discovery of fractional quantum Hall effect experi-

mentally realized the theoretical concepts of emergence and
fractionalization.[19,20] The QSL is another obvious case of
fractionalization,[15] especially the π-flux QSL that owns frac-
tionalized translation symmetry, and such a fractionalization
would result in an observable phenomenon in experiment. For
clarity, we begin with a J1–J2 Heisenberg model on the 2D
square lattice, which has attracted enormous research inter-
ests due to its intimate relation to the magnetism in high-
temperature superconducting materials,[1,21] but we would not
only constrain ourselves in this model. The Hamiltonian of
J1–J2 model is given by

H = J1 ∑
⟨i j⟩

𝑆i ·𝑆 j + J2 ∑
⟨⟨i j⟩⟩

𝑆i ·𝑆 j, (1)

where 𝑆i is the spin-1/2 operator at the lattice site i, J1 > 0
and J2 > 0 are the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) couplings. Moreover, the sums ⟨i j⟩ and
⟨⟨i j⟩⟩ run over NN and NNN pairs, respectively. Although
there is no geometrical frustration on a square lattice, by
switching on an antiferromagnetic J2 term indeed brings com-
peting interactions and is expected, with the aid of quan-
tum fluctuations, to destroy the conventional antiferromag-
netic Néel state and result in a quantum disordered QSL. In
fact, for the small J2 region, just as the NN Heisenberg model
on a square lattice, the ground state is generally believed to be
a (π,π) long-ranged Néel order. On the other hand, when J2

becomes comparable to J1, the (π,0) and (0,π) stripe long-
range order is stabilized.[22–26] For the intermediate region

0.4 . J2/J1 . 0.6, it has been interpreted as the magnetically
disordered QSL phase with either gapless or gapped excita-
tions in various numerical studies.[22–26] We mainly focus on
the intermediate disordered regime in this work and assume it
to realize a QSL.

2.1. Abrikosov fermion construction

To analyze the QSL phase of this model, we here adopt
the well-known and widely-used Abrikosov fermion construc-
tion since it can be utilized to study both gapped and gapless
phases, while the Schwinger boson formalism has the limi-
tation to study gapped phases.[27] In the Abrikosov fermion
representation, the effective spin-1/2 operator 𝑆i on site i is
represented by

𝑆i =
1
2 ∑

α,β

f †
iα𝜎αβ fiβ , (2)

where f †
i,α ( fi,α) creates (annihilates) a spinon with the spin

index α =↑,↓ at site i, and 𝜎 is a vector of three Pauli ma-
trices. The Hilbert space constraint ∑α f †

iα fiα = 1 on local
fermion number is imposed to project out the unphysical states
and faithfully reproduce the physical Hilbert space. Substitut-
ing Eq. (2) into the J1–J2 Hamiltonian Eq. (1), one obtains an
interacting four-fermion system. Further performing a mean-
field decoupling would reformulate the interacting fermionic
system to a quadratic level.[15] Specifically, by ignoring the
pairing channel, the general quadratic spinon Hamiltonian
with only spinon hopping sector is obtained as

HMF =− ∑
i j,α

(
t1,i j f †

i,α f j,α + t2,i j f †
i,α f j,α +h.c.

)
−µ ∑

i,α
f †
i,α fi,α ,

(3)

where we have maintained the SU(2) spin rotation symme-
try of the original spin model and the local occupation con-
straint is relaxed such that only its average value satisfies
∑α⟨ f †

iα fiα⟩= 1. The global chemical potential µ is intro-
duced as a Lagrange multiplier to enforce such a constraint.
Moreover, the mean-field parameters t1,i j and t2,i j represent the
hopping amplitudes between NN and NNN sites, respectively.
In the numerical studies, such as variational Monte Carlo ap-
proach, a similar mean-field Hamiltonian to Eq. (3) can also be
exploited as a good starting point to construct the many-body
variational wavefunction.

Here we stress again our purpose in the following is not
to solve for the detailed ground state of a spin Hamiltonian
as in Eq. (1). Instead, we assume that the system stabilizes
a magnetically disordered QSL phase in the intermediate re-
gion 0.4 . J2/J1 . 0.6, as suggested by a variety of numerical
studies.[22–26] Comparing with pursuing solving a spin model
exactly, it might be a better, or at least as a supplementary
strategy to start from the potential QSL states and then single
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out the nontrivial and robust experimental signatures that al-
low us to distinguish a QSL. We then start from a mean-field
theory to proceed with our analysis since much can already be
learned from a mean-field investigation. A full treatment of
the original spin model requires the involvement of all quan-
tum fluctuations of the parameters around the mean-field solu-
tion, but the robust and intrinsic experimental signatures could
maintain even the fluctuations are included.

The spinons fulfill the projective symmetries of the square
lattice, and the mean-field parameters t1,i j and t2,i j, also called
mean-field ansatzs in the literatures, should be constrained by
a systematic projective symmetry group (PSG) analysis,[15]

which results in a classification of all possible QSLs. It is
shown[15] that under open boundary condition of the square
lattice, one can always fix the gauge such that the gauge trans-
formations for translations satisfy

𝒢T1(i) = 1, 𝒢T2(i) = η
ix+iy
xy , (4)

where T1, T2 are two translations of the square lattice, and
𝒢T (i) is the associated SU(2) gauge transformation. The
spinons thus fulfill the gauge enriched[15] translations T̃1 =

𝒢T1T1 and T̃2 =𝒢T2T2. The parameter ηxy takes values ±1, then
it generally divides all the possible QSLs on the lattice into
two categories, i.e., zero-flux states correspond to ηxy = +1
and π-flux states correspond to ηxy =−1. In particular, the π-
flux states harbor a fractionalized translation symmetry, which
would result in a sharp signature in experiment. To illustrate
this idea, we adopt the simplest two cases and the values of ti j

in Eq. (3) we have taken are shown in Fig. 1, where figure 1(a)
corresponds to a zero-flux QSL, while figure 1(b) corresponds
to a π-flux QSL. It can be easily verified that t1,i j = t1, ji =−t1
on the (thick) red bonds in Fig. 1(b) involve a background π

gauge flux penetrating per square plaquette, while this flux has
no influence on the NNN hoppings. In fact, figures 1(a) and
1(b) correspond to a spinon Fermi surface QSL and a π-flux
Dirac QSL, respectively.

(a) (b)

t t

t ↩t

t t

Fig. 1. Schematic illustration of spinon hoppings up to second neighbors on
the square lattice. (a) The zero-flux QSL with a uniform nearest-neighbor
spinon hopping coefficient t1,i j = t1, ji = t1 and next-nearest-neighbor spinon
hopping coefficient t2,i j = t2, ji = t2. (b) The π-flux QSL with a gauge fixing
such that the red thick lines stand for negative spinon hopping coefficient
t1,i j = t1, ji =−t1, while the meaning of other lines remains unchanged.

2.2. Inelastic neutron scattering spectrum and enhanced
spectral periodicity

Inelastic neutron scattering (INS) measurement repre-
sents the best experimental probe to directly detect the mag-
netic excitations, and the dynamical information of excitations
is encoded into the dynamical spin structure factor

𝒮(𝑞,ω) =
1
N ∑

i, j
e i𝑞·(𝑟i−𝑟 j)

∫
dt e−iωt⟨𝑆−

i (t) ·𝑆+
j (0)⟩

=∑
n

δ [ω −ξn(𝑞)]|⟨n|𝑆+
𝑞 |G⟩|2,

(5)

where N is the total number of lattice sites and the summa-
tion runs over all the excited eigenstates |n⟩ with ξn(𝑞) being
the energy of the n-th excited state with momentum 𝑞, while
|G⟩ stands for the spinon ground state with spinons filling the
Fermi sea. In the numerical calculations, the delta function is
taken to have a Lorentz broadening, δ (ω) = η/[π(ω2 +η2)]

with η = 0.1t1. Moreover, since 𝑆+
𝑞 = ∑𝑘 f †

𝑘+𝑞,↑ f𝑘,↓, the
summation in Eq. (5) should be over all possible spin-1 excited
states that are characterized by one spinon particle–hole pair
crossing the spinon Fermi energy with a total energy ω and
total momentum 𝑞.[9] In other words, the momentum-transfer
𝑞 and energy-transfer ω(𝑞) of the neutron should be shared
between the spinon particle–hole pair

𝑞 = 𝑘1 −𝑘2, (6)

ξ (𝑞) = ω1(𝑘1)−ω2(𝑘2), (7)

where ω1(𝑘) [ω2(𝑘)] is the spinon (hole) excitation energy
with momentum 𝑘 and the minus sign comes from the na-
ture of hole excitation. The above equations indicate the two-
spinon spectrum continuum, which is often count as a mani-
festation of fractionalized excitations, is a general character of
QSLs. In Figs. 2(a) and 2(b), we present the density plots of
dynamical structure factor 𝒮(𝑞,ω) along the high symmetry
line Γ –M–Γ –X–M marked in Fig. 2(e) for zero-flux QSL and
π-flux QSL, respectively. As depicted in Fig. 2(a), besides the
obvious spectral continuum, a clear V-shape appears around
the Γ point, which originates from the particle–hole pair exci-
tations crossing near the Fermi surface.[9] While for the π-flux
Dirac QSL in Fig. 2(b), the obvious phenomenon becomes the
low-energy cone features that originate from the inter- (large
𝑞) and intra-Dirac (small 𝑞) cone scatterings, which is just the
reflection of a Dirac QSL with Dirac band touching, not the π-
flux for the spinons of the QSL. However, these signatures and
evidences seem not to be strong enough to confirm a QSL, as it
has been explicitly shown that a simple spectrum continuum,
including the V-shape feature, in the dynamical spin structure
factor can also be explained in the scenarios of usual glassy
and disorder-induced states.[12–14] Therefore, additional sig-
nature of spectrum that is more unique to QSLs is expected to
diagnose the fractionalized excitations.
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Fig. 2. Calculated dynamical spin structure factor 𝒮(𝑞,ω) along the high symmetry line Γ –M–Γ –X–M in the first Brillouin zone, (a) zero-flux
spinon Fermi surafce QSL with V-shape character around the Γ and (b) π-flux Dirac QSL with clear low-energy cone features around the
high symmetry points. Contour plot of the upper edge of 𝒮(𝑞,ω) in the first Brillouin zone for (c) zero-flux spinon Fermi surafce QSL and
(d) π-flux Dirac QSL. (e) Original Brillouin zone (outer black square) and the folded Brillouin zone (light gray square) of square lattice. The
parameters adopted in the calculation are t2/t1 = 0.2 with zero temperature kBT/t1 = 0.

For this purpose, next we consider the intrinsic fraction-
alized translation symmetry due to the π gauge flux of the π-
flux QSL. According to Eq. (4), the translation symmetries of
spinons should satisfy

T̃1T̃2T̃−1
1 T̃−1

2 = ηxy, (8)

where T̃1 and T̃2 are the gauge enriched translations acting on
the spinon degrees of freedom instead on the physical spins.
For the zero-flux state with ηxy = 1, the translations com-
mute as usual, while for the π-flux state with ηxy =−1, the
anti-commutation of translations implies a fractionalization of
symmetry. It was first realized that the crystal momentum
fractionalization of internal spinon degrees of freedom has
dramatic effects on the neutron spectrum.[16,17] As a conse-
quence, the periodicity of the upper excitation edge of the dy-
namic spin structure factor defined by

edge(𝑞) = max
𝑘

[ω1(𝑘+𝑞)−ω2(𝑘)] (9)

is doubled.[28] Therefore, for the zero-flux state, the upper
two-spinon excitation edge should have the usual periodicity,
while for the π-flux state, the upper two-spinon excitation edge
exhibits an enhanced periodicity, that could serve as a sharp
identification of fractionalized excitations beyond the simple
spectrum continuum, since it is impossibly mimicked by any

disorder-induced states. We illustrate the contour plots of the
upper edge of the dynamic spin structure factor for the zero-
flux QSL and π-flux QSL in Figs. 2(c) and 2(d), respectively.
It is clear that the π-flux QSL exhibits a fractionalization pat-
tern with an enhanced periodicity in Fig. 2(d), which is readily
accessible to the INS measurements. The enhanced spectral
periodicity with a folded Brillouin zone is the dynamical prop-
erty rather than the static property, and can not be captured by
the static spin structure factor.

3. Spectrum crossing under magnetic fields

In Section 2, we have explicitly demonstrated that the ex-
citation spectrum of the π-flux QSL would show an enhanced
spectral periodicity in the reciprocal space, which is an intrin-
sic character of this kind of state and would be a strong exper-
imental evidence for QSL. Then a natural question is that for
the zero-flux state, does one have any key features besides the
simple spectral continuum to distinguish it from the glassy or
disorder-induced states? In this section, we consider the field-
driven behavior of a QSL. Under a moderate external magnetic
field, the QSL phase should not be destroyed immediately,
then we can safely consider the QSL behavior with fields. The
fermionic spinon, unlike the usual electron, is electrical charge
neutral and does not directly couple to the external magnetic
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field through the conventional orbital coupling. Especially in
the strong Mott insulating regime that we focus in this section,
there is only[29] a simple linear Zeeman coupling

HB =−Bz

2 ∑
i,αβ

f †
i,α σ

z
αβ

fi,β , (10)

where we have considered the z-direction field for concrete-
ness, and the Landé g factor and Bohr magneton µB have been
absorbed in Bz. When the Zeeman term Eq. (10) enters the
spinon Hamiltonian Eq. (3), a direct consequence would be the
splitting spinon bands for spin-↑ and spin-↓ spinons, as shown
in Fig. 3(b). At the zero momentum transfer, there should be
a large density of spinon particle–hole excitations with the en-
ergy ω(𝑞 = 0) = Bz due to the splitting bands.

To further observe how these splitting spinon bands are
reflected in the INS spectrum, we utilize the full zero-flux
spinon Hamiltonian with Zeeman term to calculate the dynam-
ical spin structure factor, and the result is depicted in Fig. 3(a).
We note that the spectrum preserves the spinon continuum
and remains gapless as expected, while the spectral weight
at the Γ point is strongly enhanced at the band splitting en-
ergy ω = Bz, well compatible with the large density of spinon
particle–hole excitations with the energy Bz at zero momentum
transfer. Besides the enhancement of the spectral intensity at
the Γ point and the Zeeman splitting energy, the most inter-
esting phenomenon is that the V-shaped spectrum around Γ

point under zero field [see Fig. 2(a)] is recast into a X-shaped
spectral crossing near the Zeeman splitting energy, which is
a rather unique field-driven behavior for spinons originating
from splitting spinon bands.[29] Therefore, we conclude that
the X-shaped spectral crossing under Zeeman fields is another
strong evidence for the QSL with spinon Fermi surface, since
it is hard to imagine that the spin glassy or disorder-induced
freezing states could reproduce such a spectral crossing under
the magnetic fields.

∆B
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Fig. 3. (a) Dynamic spin structure factor for zero-flux QSL with t2/t1 = 0.2
and z-direction magnetic field Bz/t1 = 4. (b) Schematic illustration of the
particle–hole excitations with small momenta. Such excitations for each q
are degenerate at zero field, while the two-fold degeneracy is lifted soon
when the Zeeman field is turned on.

4. Quantized thermal Hall effect
In the previous two sections, we mainly focused on the

INS spectral properties of the square lattice QSLs and sug-
gest two strong signatures for QSLs, either from the intrinsic

characters of QSLs or from the external field-driven behav-
iors. This is partly motivated by the fact that the spectral con-
tinuum of spin excitations detected by INS measurement is a
direct evidence and consequence for the fractionalization. In
this section, we turn to the thermal transport properties that
can unveil the nature of the low-energy itinerant excitations.
In the QSL phase, the deconfined spinons carry energy and
thus transport heat under the temperature gradient field, same
as the electrons transport charge in an electrical field. At the
mean-field level where the spinons are nearly free, the spinon
term should dominate the thermal conductivity κxx if spinons
exist at low energies, and a finite residual of κxx/T in the low-
temperature limit is proposed as the evidence for spinon Fermi
surface or gapless spinon excitations, since the phonon contri-
bution should be small at low temperatures. However, one
should note that the total thermal conductivity in a Mott insu-
lator (especially the strong spin-orbit coupled Mott insulator)
usually is not a simple addition of the magnetic contribution
and the phonon contribution,[30] while the mutual scattering
between the magnetic excitations and the phonons could sup-
press the value of κxx observed in the transport experiments.
To obtain the smoking-gun signatures of QSLs, here we only
focused on the thermal Hall effect of spinons as phonons usu-
ally do not contribute to thermal Hall transport.

Thermal Hall effect in QSLs is a rather nontrivial phe-
nomenon since the spinon does not directly couple to external
fields through conventional Lorentz coupling as we mentioned
in Section 3. In a former work,[31] we have pointed out that
for the non-centrosymmetric U(1) QSLs with Dzyaloshinskii–
Moriya (DM) interaction, the synergism of a moderate ex-
ternal magnetic field and DM interaction could effectively
generate an internal U(1) gauge flux for the spinons and
twist the spinon motion, which would result in a finite and
non-quantized spinon thermal Hall effect under the temper-
ature gradient field. This mechanism also has its limita-
tion, as for the square lattice QSLs and other centrosymmet-
ric QSLs, the DM interaction is usually prohibited by lattice
symmetry.[32,33] An alternative way is to consider the square
lattice QSL in the weak Mott insulating regime, in which
the strong charge fluctuations can bring the ring exchange
spin interaction, and induce a scalar spin chirality term under
fields[34–36]

Hχ = Jχ ∑
i, j,k∈△

sinΦ 𝑆i ·𝑆 j ×𝑆k, (11)

where the triangle △ for sums is formed by three neighbor
sites involving two NN bonds and one NNN bond as shown in
Fig. 4(a), and Φ is the external magnetic flux through the tri-
angular plaquette in a counter clockwise way. A finite value of
this term explicitly breaks the time reversal symmetry and par-
ity, while their combination is well preserved. Moreover, de-
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coupling this term to the quadratic level would induce a com-
plex second neighbor hopping coefficient t ′2eiθi j , thus the total
NNN hopping amplitude should be

t2 + t ′2 e iθi j = (t2 + t ′2 cosθi j)+ it ′2 sinθi j

=
√

t2
2 + t ′22 +2t2t ′2 cos(θi j)eφi j

= t*2 eφi j ,

(12)

where t*2 is renormalized as t*2 =
√

t2
2 + t ′22 +2t2t ′2 cos(θi j), and

φi j is defined by tan(φi j) = t ′2 sinθi j/(t2 + t ′2 cosθi j), in our
case they are both tuning parameters and we can also denote
the total NNN hopping coefficient as t2eφi j for simplicity of
notation. A convenient convention of these hopping ampli-
tudes is shown in Fig. 4(a), where we have chosen the induced
complex NNN hopping amplitudes on top of a π-flux QSL.
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Fig. 4. (a) Schematic illustration of the spinon hopping matrix involving the complex second neighbor hopping coefficients, hopping along the arrows
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corresponding Chern numbers from the lowest band to the highest one are −1,−1,+1,+1, respectively. (e) The evolution of thermal Hall conductivity
with temperature for different phase φ , where the magnetic field is fixed at Bz/t1 = 0.4, and the unit of κxy/T here is πk2

B/6h̄.

In this sense, the significance of external magnetic field
Bz is twofold. It not only provides a linear Zeeman cou-
pling to split the spinon bands, but also induces a complex
NNN hopping coefficient that breaks the time reversal sym-
metry. Using the hopping matrix marked in Fig. 4(a), we plot
a typical spinon dispersion in Fig. 4(d), where the fermion
number constraint guarantees the bands to be half-filled, thus
the lowest two spinon bands are fully occupied while the up-
per two spinon bands are completely empty at zero temper-
ature, corresponding to a gapped QSL state. According to
Polyakov’s argument for 2D compact U(1) gauge theory,[37]

if the state is trivially gapped, the dynamical U(1) gauge field
will be confined due to the proliferation of monopoles and the
system should enter a confining ordered state. However, the
spinon Hamiltonian we considered is indeed nontrivial, since
these spinon bands own non-vanishing Berry curvatures [see
Figs. 4(b) and 4(c) for the contour plots of the spinon Berry
curvatures] and the total Chern number of the lowest two occu-
pied bands is C =−2 ̸= 0. Therefore, there would be a Chern-

Simons term in the theory for gauge fluctuations and this state
can safely get rid of the confinement issue, resulting in a CSL.
Theoretically, the chiral edge modes of CSL would contribute
to an integer quantized thermal Hall effect under temperature
gradient field, which is the smoking-gun signature of a CSL.

To explicitly demonstrate the quantized thermal Hall ef-
fect and its evolution when varying temperature and the NNN
hopping phase φ , we numerically calculate the thermal Hall
conductivity for this QSL state. The thermal Hall conductivity
formula is obtained as[38]

κxy =−k2
B

T

∫
dε(ε −µ)2 ∂ f (ε,µ,T )

∂ε
σxy(ε) , (13)

where f (ε,µ,T ) = 1/[eβ (ε−µ)+1] is the Fermi–Dirac distri-
bution with chemical potential µ , and

σxy(ε) =−1
h̄ ∑

𝑘,ξn,𝑘<ε

Ωn,𝑘 (14)

is the zero temperature Hall coefficient for a system
with the chemical potential ε and Berry curvature Ωn𝑘 =
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−2Im⟨∂un𝑘/∂kx|∂un𝑘/∂ky⟩ for the spinon band indexed by
n. Since in our case the chemical potential µ lies in the gap, in
the zero temperature limit, equation (13) is recast into

κxy

T
=−πk2

B
6h̄ ∑

n=1,2
Cn, (15)

where Cn with n = 1,2 is the Chern number of the two filled
spinon bands. In Fig. 4(e), we plot the evolution of κxy/T with
temperature at various NNN hopping phase φ , their absolute
values are all monotonically decreasing with increasing tem-
peratures, and κxy/T gets smaller for smaller φ at the same
nonzero temperature. In particular, the quantized number 2 in
the zero temperature limit is consistent with theoretical anal-
ysis, and its sign depends on the sign of phase φ . If the CSL
is induced by the external field through Eq. (11), the sign of
phase φ should depend on the direction of the field, thus the
sign of thermal Hall conductivity also depends on the fields,
which could be an additional experimental signature. In fact, a
CSL may also be realized without applied fields and the quan-
tized thermal Hall effect can be an intrinsic character. Overall,
the quantized thermal Hall conductivity would be a particu-
larly sharp signature for CSL, and is easily accessible in ther-
mal Hall transport measurement. It is worth to note that the
half-integer quantized therma Hall effect has been reported[39]

in the Kitaev QSL candidate α-RuCl3 and is proposed to cor-
respond to the chiral Majorana fermion edge mode.

5. Discussion

In summary, we have highlighted three experimental
schemes that would give smoking-gun signatures of QSLs in-
cluding the thermal transport and spectrum measurements, and
successfully applied them to square lattice QSLs. The π-flux
QSL states would result in an enhanced spectral periodicity
of the spinon continuum. It is the translation symmetry that is
intrinsically fractionalized and renders such an enhanced spec-
tral periodicity, much analogous to the fractional charge exci-
tation in the fractional quantum Hall states where the global
U(1) charge conservation gives the fractional charge quantum
number to the fractionalized excitation. Experimentally, the
enhanced spectral periodicity is accessible to the INS mea-
surements by carefully checking the the upper and lower exci-
tation edges of the spectrum. For the gapped states, both edges
can be well established, while for the gapless states, the lower
excitation edge is hardly determined in experiments, thus we
only illustrated the contour plots of the upper edge of the dy-
namic spin structure factor.

Under moderate magnetic fields when the description of
QSL is still valid, the Zeeman coupling will enter the spinon
Hamiltonian and lead to an X-shaped crossing of spectrum
around Γ point for spinon Fermi surface QSLs, which is
well compatible with the splitting bands for spin-↑ and spin-↓
spinons, and is hard to be mimiked by the trivial spin glass
or disorder-induced states. Finally, if a CSL is realized (ei-
ther realized spontaneously or driven by external fields), it
would exhibit a quantized thermal Hall effect and a gapped
spectrum. All of these sharp signatures can be robust even
when the gauge fluctuations are included and do not depend
on the geometry of underlying lattice, therefore we conclude
that these signatures could generally apply to other relevant
QSLs as strong evidences.
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